Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
Genet. mol. res. (Online) ; 3(3): 395-409, 2004. tab, ilus, graf
Article in English | LILACS | ID: lil-482169

ABSTRACT

Levels of mtDNA(4977) deletions (DeltamtDNA(4977)) have been found to be lower in tumors than in adjacent non-tumoral tissues. In 87 cancer patients, DeltamtDNA(4977) was detected by multiplex polymerase chain reaction (PCR) amplification in 43 (49%) of the tumors and in 74 (85%) of the samples of non-tumoral tissues that were adjacent to the tumors. DeltamtDNA(4977) deletions were detected in 24% of the breast tumors, 52% of the colorectal tumors, 79% of the gastric tumors, and 40% of the head and neck tumors as compared with 77, 83, 100, and 90% of the adjacent respective non-tumoral tissues at the same DNA template dilution. Based on limiting dilution PCR of 16 tumors and their adjacent non-tumoral tissues, it was found that the amount of DeltamtDNA(4977) was 10- to 100-fold lower in the tumor than in the respective control non-tumoral tissues. Real-time PCR experiments were performed to quantify the number of DeltamtDNA(4977) deletions per cell, by determining the mitochondrial-to-nuclear DNA ratio. In all of the cases of breast, colorectal, gastric, and head and neck cancer the proportion of DeltamtDNA(4977) in tumors was lower than that of the respective non-tumoral tissue. Traces of DeltamtDNA(4977) in tumors were apparently due to contamination of tumor tissue with surrounding non-tumoral tissue, as evidenced by tumor microdissection and in situ PCR techniques, suggesting that tumors are essentially free of this mutation. Although the metabolic effect of DeltamtDNA(4977) may be minimal in normal (non-tumor) tissue, in tissue under stress, such as in tumors, even low levels of DeltamtDNA(4977) deletions may be intolerable.


Subject(s)
Female , Humans , Sequence Deletion/genetics , Mutation/genetics , Colorectal Neoplasms/genetics , Stomach Neoplasms/genetics , Breast Neoplasms/genetics , Head and Neck Neoplasms/genetics , Case-Control Studies , DNA, Mitochondrial/genetics , Polymerase Chain Reaction , Tumor Cells, Cultured
2.
Genet. mol. res. (Online) ; 2(2): 178-184, Jun. 2003.
Article in English | LILACS | ID: lil-417612

ABSTRACT

We developed, and quantitatively and qualitatively evaluated an easily reproducible method for high yield purification of mitochondrial DNA (mtDNA) from human placentae by mechanical tissue disruption, differential centrifugation of mitochondria, enzymatic digestion, phenol extraction and ethanol precipitation. Average mtDNA yields were 2.5 microg/g tissue (without an RNAse treatment step) and 1.5 microg/g tissue (with an RNAse treatment step). This mtDNA migrated as a 16.5-kb isolated band in agarose gels; it yielded fragments of expected sizes after digestion with restriction enzymes; it successfully served as a template in long PCR for amplification of mtDNA sequences, and hybridized to an mtDNA probe in a predictable fashion. MtDNA yields of this method were 10-fold higher than those of previously reported ones for mtDNA purification from freshly obtained human cells and tissues, with the advantage that more placental tissue can be obtained for mtDNA purification than other types of tissue, at lower cost, and with minimal or no ethical issues


Subject(s)
Humans , DNA, Mitochondrial/isolation & purification , Placenta , Base Sequence , DNA Restriction Enzymes
3.
Genet. mol. res. (Online) ; 1(2): 167-175, Jun. 2002.
Article in English | LILACS | ID: lil-417638

ABSTRACT

We developed a model system for testing gene vectors, based on the growth of murine tumors on the chorioallantoic membrane (CAM) of embryonic chickens. The ability of selected murine cells to grow on the CAM was rated according to the following criteria: i) formation of tumor masses; ii) metastasis formation; iii) reproducibility; iv) yield, indicated as the number of embryos surviving to assessment time with visible tumors on the CAM; v) maintainability of the cell, both in the original host and the embryonic chick, or 'shuttle maintainability'; vi) detection by the naked eye, and vii) cost/benefit relation. The murine melanoma cell lineage, B16F10, which efficiently forms distinct, pigmented tumor masses and metastases on the CAM, performed better in this model than the murine B61 cell line. In vitro transduction of B16F10 cells with a recombinant adenovirus carrying a construct of the E. coli LacZ gene followed by inoculation onto the CAM resulted in beta-galactosidase expression in the tumor mass growing on the CAM. This model is potentially applicable to preclinical evaluation of gene vectors, especially for gene therapy of cancer


Subject(s)
Humans , Animals , Adenoviridae/genetics , Genetic Vectors , Melanoma, Experimental/pathology , Allantois , Chick Embryo , Chorion , Cost-Benefit Analysis , Tumor Cells, Cultured/pathology , Mice , Melanoma, Experimental/genetics , Reproducibility of Results
4.
Braz. j. med. biol. res ; 32(2): 133-45, feb. 1999. tab, ilus
Article in English | LILACS | ID: lil-228255

ABSTRACT

Gene therapy is the treatment of diseases based on the transfer of genetic information. Agents that carry or deliver DNA to target cells are called vectors (Latin vector: carrier, deliverer). Ideally, a vector should accommodate an unlimited amount of inserted DNA, lack the ability of autonomous replication of its own DNA, be easily manufactured, and be available in concentrated form. Secondly, it should have the ability to target specific cell types or to limit its gene expression to specific cell types, and to achieve sustained gene expression in the long term or in a controlled fashion. Finally, it should not be toxic or immunogenic. Such a vector does not exist and none of the DNA delivery systems so far available for in vivo gene transfer is perfect with respect to any of these points. Gene therapy and the means to promote it depend heavily on the development and improvement of new gene vector systems


Subject(s)
Gene Transfer Techniques , Genetic Therapy , Genetic Vectors , Viruses/genetics , DNA
SELECTION OF CITATIONS
SEARCH DETAIL